\(\int \frac {\sec (c+d x) (B \sec (c+d x)+C \sec ^2(c+d x))}{(a+b \sec (c+d x))^{3/2}} \, dx\) [845]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F(-1)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 40, antiderivative size = 275 \[ \int \frac {\sec (c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\frac {2 \left (a b B-2 a^2 C+b^2 C\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b^3 \sqrt {a+b} d}+\frac {2 (b (B-C)-2 a C) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b^2 \sqrt {a+b} d}+\frac {2 a (b B-a C) \tan (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}} \]

[Out]

2*(B*a*b-2*C*a^2+C*b^2)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec
(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^3/d/(a+b)^(1/2)+2*(b*(B-C)-2*C*a)*cot(d*x+c)*EllipticF
((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-
b))^(1/2)/b^2/d/(a+b)^(1/2)+2*a*(B*b-C*a)*tan(d*x+c)/b/(a^2-b^2)/d/(a+b*sec(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.61 (sec) , antiderivative size = 275, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {4157, 4094, 4090, 3917, 4089} \[ \int \frac {\sec (c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\frac {2 \left (-2 a^2 C+a b B+b^2 C\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b^3 d \sqrt {a+b}}+\frac {2 a (b B-a C) \tan (c+d x)}{b d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}+\frac {2 (b (B-C)-2 a C) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b^2 d \sqrt {a+b}} \]

[In]

Int[(Sec[c + d*x]*(B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x])^(3/2),x]

[Out]

(2*(a*b*B - 2*a^2*C + b^2*C)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a -
 b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b^3*Sqrt[a + b]*d) + (2*(b
*(B - C) - 2*a*C)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(
b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b^2*Sqrt[a + b]*d) + (2*a*(b*B - a*C)
*Tan[c + d*x])/(b*(a^2 - b^2)*d*Sqrt[a + b*Sec[c + d*x]])

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4089

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + C
sc[e + f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b*(B/A), 2]], (a
*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4090

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Dist[A - B, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[B, Int[Csc[e + f*x]*((1 +
 Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && NeQ[A
^2 - B^2, 0]

Rule 4094

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_
)), x_Symbol] :> Simp[a*(A*b - a*B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 1)*(a^2 - b^2))), x]
- Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[b*(A*b - a*B)*(m + 1) - (
a*A*b*(m + 2) - B*(a^2 + b^2*(m + 1)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a
*B, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]

Rule 4157

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(
x_)]^2*(C_.))*((c_.) + csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.), x_Symbol] :> Dist[1/b^2, Int[(a + b*Csc[e + f*x])
^(m + 1)*(c + d*Csc[e + f*x])^n*(b*B - a*C + b*C*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rubi steps \begin{align*} \text {integral}& = \int \frac {\sec ^2(c+d x) (B+C \sec (c+d x))}{(a+b \sec (c+d x))^{3/2}} \, dx \\ & = \frac {2 a (b B-a C) \tan (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {2 \int \frac {\sec (c+d x) \left (-\frac {1}{2} b (b B-a C)-\frac {1}{2} \left (a b B-2 a^2 C+b^2 C\right ) \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{b \left (a^2-b^2\right )} \\ & = \frac {2 a (b B-a C) \tan (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {((a-b) (b (B-C)-2 a C)) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{b \left (a^2-b^2\right )}-\frac {\left (a b B-2 a^2 C+b^2 C\right ) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx}{b \left (a^2-b^2\right )} \\ & = \frac {2 \left (a b B-2 a^2 C+b^2 C\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b^3 \sqrt {a+b} d}+\frac {2 (b (B-C)-2 a C) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b^2 \sqrt {a+b} d}+\frac {2 a (b B-a C) \tan (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}} \\ \end{align*}

Mathematica [A] (warning: unable to verify)

Time = 15.56 (sec) , antiderivative size = 466, normalized size of antiderivative = 1.69 \[ \int \frac {\sec (c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\frac {(b+a \cos (c+d x))^2 \sec ^2(c+d x) \left (\frac {2 \left (a b B-2 a^2 C+b^2 C\right ) \sin (c+d x)}{b^2 \left (-a^2+b^2\right )}-\frac {2 \left (a b B \sin (c+d x)-a^2 C \sin (c+d x)\right )}{b \left (-a^2+b^2\right ) (b+a \cos (c+d x))}\right )}{d (a+b \sec (c+d x))^{3/2}}+\frac {2 (b+a \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x) \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \left (2 (a+b) \left (-a b B+2 a^2 C-b^2 C\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )+2 b (a+b) (-2 a C+b (B+C)) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right )+\left (-a b B+2 a^2 C-b^2 C\right ) \cos (c+d x) (b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{b^2 \left (-a^2+b^2\right ) d \sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )} (a+b \sec (c+d x))^{3/2}} \]

[In]

Integrate[(Sec[c + d*x]*(B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x])^(3/2),x]

[Out]

((b + a*Cos[c + d*x])^2*Sec[c + d*x]^2*((2*(a*b*B - 2*a^2*C + b^2*C)*Sin[c + d*x])/(b^2*(-a^2 + b^2)) - (2*(a*
b*B*Sin[c + d*x] - a^2*C*Sin[c + d*x]))/(b*(-a^2 + b^2)*(b + a*Cos[c + d*x]))))/(d*(a + b*Sec[c + d*x])^(3/2))
 + (2*(b + a*Cos[c + d*x])*Sec[c + d*x]^(3/2)*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(2*(a + b)*(-(a*b*B) + 2*a
^2*C - b^2*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*El
lipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + 2*b*(a + b)*(-2*a*C + b*(B + C))*Sqrt[Cos[c + d*x]/(1 + C
os[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a -
 b)/(a + b)] + (-(a*b*B) + 2*a^2*C - b^2*C)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)
/2]))/(b^2*(-a^2 + b^2)*d*Sqrt[Sec[(c + d*x)/2]^2]*(a + b*Sec[c + d*x])^(3/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(3041\) vs. \(2(255)=510\).

Time = 11.83 (sec) , antiderivative size = 3042, normalized size of antiderivative = 11.06

method result size
default \(\text {Expression too large to display}\) \(3042\)
parts \(\text {Expression too large to display}\) \(3048\)

[In]

int(sec(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-2/d/b^2/(a+b)/(a-b)*(-2*B*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos
(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^3*cos(d*x+c)+B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))
^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b+B*(1/(a+b)
*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(
d*x+c)+1))^(1/2)*a*b^2-B*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d
*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^3*cos(d*x+c)^2-B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))
^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2+C*sin(d*x+
c)*b^3+4*C*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+
a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)-4*C*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*
(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)-2*C*Ellipti
cE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos
(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)^2+2*C*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos
(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)^2+C*a^2*b*cos(d*x+c)*sin(d*
x+c)-2*C*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c
)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^3-B*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos
(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)^2+B*(1/(a+b)*(b+a*cos(d*x+c)
)/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))
*a^2*b*cos(d*x+c)^2+B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*Ellipt
icE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2*cos(d*x+c)^2-2*B*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(
a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c
)+C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc
(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2+2*C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)
+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b^3*cos(d*x+c)+2*C*(1/(a+b)*(b+a*cos(d*x+c))/(
cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*
b^2*cos(d*x+c)+2*C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE
(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2*cos(d*x+c)-2*C*a^3*cos(d*x+c)*sin(d*x+c)-B*(1/(a+b)*(b+a*cos
(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1)
)^(1/2)*b^3+B*a^2*b*cos(d*x+c)*sin(d*x+c)-B*a*b^2*cos(d*x+c)*sin(d*x+c)-C*a^2*b*sin(d*x+c)+C*a*b^2*cos(d*x+c)*
sin(d*x+c)+C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d
*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b^3-C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d
*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b^3+C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+
c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2-2*C*
(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x
+c),((a-b)/(a+b))^(1/2))*b^3*cos(d*x+c)-C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x
+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b^3*cos(d*x+c)^2+C*(1/(a+b)*(b+a*cos(d*x+c)
)/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))
*b^3*cos(d*x+c)^2+2*B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*Ellipt
icE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b*cos(d*x+c)+2*B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^
(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2*cos(d*x+c)+
C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d
*x+c),((a-b)/(a+b))^(1/2))*a*b^2*cos(d*x+c)^2+C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(c
os(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2*cos(d*x+c)^2-4*C*EllipticE(cot(
d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)
+1))^(1/2)*a^3*cos(d*x+c)+2*C*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))
^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b-2*C*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b
+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b-2*C*EllipticE(
cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*
x+c)+1))^(1/2)*a^3*cos(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/(cos(d*x+c)+1)

Fricas [F]

\[ \int \frac {\sec (c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )} \sec \left (d x + c\right )}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(sec(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^3 + B*sec(d*x + c)^2)*sqrt(b*sec(d*x + c) + a)/(b^2*sec(d*x + c)^2 + 2*a*b*sec(d*x +
c) + a^2), x)

Sympy [F]

\[ \int \frac {\sec (c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {\left (B + C \sec {\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(sec(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+b*sec(d*x+c))**(3/2),x)

[Out]

Integral((B + C*sec(c + d*x))*sec(c + d*x)**2/(a + b*sec(c + d*x))**(3/2), x)

Maxima [F(-1)]

Timed out. \[ \int \frac {\sec (c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Timed out

Giac [F]

\[ \int \frac {\sec (c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )} \sec \left (d x + c\right )}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(sec(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))*sec(d*x + c)/(b*sec(d*x + c) + a)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec (c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\cos \left (c+d\,x\right )\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

[In]

int((B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)*(a + b/cos(c + d*x))^(3/2)),x)

[Out]

int((B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)*(a + b/cos(c + d*x))^(3/2)), x)